Catalogue 56

Medicine ♦ Science ♦ Technology

Natural History ♦ Ecology

Computing

Book Collecting

Paleography ♦ Art History ♦ Typography

Sinology ♦ Egyptology
All items are guaranteed as described. If you wish to return an item for any reason, please notify us in advance and return the item within two weeks of receipt.
Medical Electricity and “Frankenstein”

1. **Aldini, Giovanni** (1762–1834). An account of the late improvements in galvanism, with a series of curious and interesting experiments performed before the commissioners of the French National Institute, and repeated lately in the anatomical theatres of London . . . to which is added, an appendix containing the author’s experiments on the body of a malefactor executed at Newgate. 4to. xi [1], 221 [3, incl. adverts. leaf] pp. 4 engraved plates, engraved vignette on title illustrating the medal struck in Aldini’s honor by the faculties of Guy’s and St. Thomas’s Hospitals. London: Cuthell and Martin; J. Murray, 1803. 278 x 202 mm. Quarter morocco, marbled boards in period style. Tears in title repaired, unobtrusive library stamps on title and plates, otherwise very good. $7500

First Edition, including the First Editions in English of Aldini’s *Dissertationes duae* (1794). Aldini, the nephew of Galvani, was the premier apologist for his uncle’s theories of animal electricity. His *Account of the Late Improvements* represents his first book-length treatment of galvanism; it was translated from his original French manuscript, and included supplements taken from his previous short papers in Latin, as well as an account of Aldini’s sensational galvanic experiments performed on executed criminals. This work, which is rare on the market, is in many ways the most dramatic of all the early works on medical electricity.

Aldini’s book was the outcome of a successful tour of England, during which he demonstrated aspects of galvanism at hospitals and on the body of a murderer, George Foster, who had been executed at Newgate Prison on 18 January 1803. This last demonstration, during which “the jaw began to quiver, the adjoining muscles were horribly contorted and the left eye actually opened” (p. 193), seized the imagination of the British public and remained an enduring theme in popular culture. Mary Shelley, who knew of Aldini’s work, used the idea of galvanic reanimation to brilliant effect in her classic novel *Frankenstein: or The Modern Prometheus* (1818).

First Stereotactic Instrument for Mapping the Brain

2. Altukhov, Nikolai. Entsefalometriya mozga cheloveka v otnoshenii k polu, vozrastu i chereponomu ukazatelyu [in Cyrillic]. iii, 55, [1]pp. 6 folding plates, text illustrations. Moscow: Izdatelstvo Moskovskogo Universiteta, 1891. 265 x 180 mm. (mostly unopened). Original printed wrappers, spine repaired, edges strengthened. Minor foxing but very good. Presentation Copy, inscribed by the author to Konstantin Alekseevich Satunin (1863–1915), a Russian zoologist who described many previously undiscovered mammals of Russia and Central Asia. $3750

First Edition, and rare, with only two copies listed in OCLC (NLM and the Royal College of Surgeons). In 1889, nearly 20 years before Horsley and Clarke published their paper on the use of stereotaxy to examine the brain, Dmitrii Zernov, a professor of anatomy at Moscow University, invented the first prototype of a stereotaxic instrument, an arc-based device for cerebral mapping that he called an encephalometer. In a preliminary communication on his device, published in the Russian journal Trudy Fiziko-Meditsynskogo Obshhestva Moskovskogo Universiteta (Vol. 2 [1889]: 70–80), Zernov stated:
I built an instrument which enables to project the pattern of cranial sutures or cerebral sulci or deep-seated brain structures on the spherical surface and then transform it onto the plane similar to the projection of the terrestrial globe on the map. The localization of a given point on the brain surface is determined by the degrees of latitude and longitude (quoted in Lichterman, p. 1).

Two years later Zernov’s student Nikolai Altukhov gave a complete description of the encephalometer in the present thesis, which included six detailed projection maps based on 40 post-mortem examinations. “Projections of anterior and posterior parts of the corpus callosum, insula and some basal ganglia (thalamus, nucleus lenticularis and caput nuclei caudate) were localized on the surface of the head. [Altukhov] also noted similarity in female and pediatric brains and concluded that the former are underdeveloped” (Lichterman, p. 3). Since both Zernov and Altukhov’s papers were published only in Russian, Western neuroscientists remained unaware of Zernov’s encephalometer until fairly recently; neither Zernov nor his instrument is discussed in our standard sources in neurology and neurosurgery.

$15,000

First Edition. Considering that it is among the rarest of all anatomies, and certainly the largest and in many ways the most spectacular, it is remarkable that two nearly identical editions of Mascagni’s posthumous life-size anatomy were published almost simultaneously. The present lithographed edition, the first very large format book illustrated through the process of lithography, was issued between 1823 and 1826; an edition with engraved plates was published in Pisa under the title *Anatomia universa* (1823–32). Though the two editions were printed by different processes, the image quality of the two is remarkably similar and it is debatable which is superior from either the artistic or scientific standpoint. Antommarchi’s version, in an homage to Vesalius, includes imaginary landscape backgrounds created for the base of his musclemen; these do not appear in the Italian edition. There are other subtle differences. Antommarchi included letter keys within the images of some of the less-complex plates, eliminating the need for outline plates to those images. He also published more anatomical plates than the Italian edition.

The edition we are offering was issued in 15 parts between 1823 and 1826 by the lithographic press of the Comte de Lasteyrie, one of the two founders of lithography in France (an accompanying text volume, not present with this copy, was issued in 1826 and bears the imprint of Lasteyrie’s successor, R.
Brégeaut). The atlas, with magnificent plates printed on single broadsheets measuring 970 x 650 mm. uncut, is comparable in size to the double elephant folio edition of Audubon’s *Birds of America* (1827-38), which measures about 985 x 660 mm. It is without doubt the largest lithographically printed book issued during the incunabula period of lithography. The atlas was issued in both uncolored and colored versions; according to the part-title included with this copy, uncolored fascicles sold for 30 francs each and colored ones for 80 francs each. Chou-lant, writing in the 1840s when copies of both editions might have remained available from the publishers, states that copies of the completed version with colored plates could be purchased for 375 francs and uncolored copies for 150 francs. Because the plates are so large, in some extant copies of the atlas they are backed with linen and cut for folding with some resulting loss of image. This is not the case here: Each plate is folded horizontally and mounted on a guard, preserving the entire image. Though colored copies are certainly more expensive, this extremely rare black and white copy has its own spectacular aesthetic and shows the beauty of the lithographed images in a purer way.

The publication history of these two editions is complex and usually misunderstood. In connection with a much more expensive copy of the hand-colored version, we previously had the opportunity to study Antommarchi’s preface to the text of the lithographed edition, which provides valuable information on this topic. Antommarchi was a pupil of the great Italian anatomist Paolo Mascagni, and at the time of Mascagni’s death was serving as his prospector, responsible for preparing dissections for demonstration. Mascagni spent a great deal of his time, energy and money during his career in the production of a life-sized human anatomy, titled *Anatomia universa*, which he intended to have printed using engraved copperplates; this required meticulous preparation of very large plates for the work’s enormous images. (Some scholars have suggested that Mascagni was hoping to have this work printed in color by the Le Blon / Gautier d’Agoty process; however, that process of color-printing mezzotints would not have been able to reproduce Mascagni’s drawings in sufficient detail.) At his death Mascagni left the *Anatomia universa* unfinished, along with two others, including a “Prodromo” to the *Anatomia universa*. These manuscripts he put in the hands of Antommarchi, who was left in charge of publishing these three works on behalf of the Mascagni family.
Since the publication of the Prodromo and the grand anatomy would require a large sum of money, a private company was formed, with the Mascagni family’s permission, to supply the necessary funds. As Antommarchi states in his preface (p. iv),

I was placed at the head of this operation, charged with coordinating materials, perfecting the plates, preparing the texts and overseeing the successive publication of these two books.

Antommarchi issued the Prodromo in 1819. In the meantime he had been appointed physician to Napoleon, then in exile on the remote island of St. Helena, and on 10 September 1819 he was sent to St. Helena to provide medical care to the deposed emperor. It is possible that Napoleon requested Antommarchi’s services because, like Napoleon, Antommarchi was Corsican by birth. Antommarchi brought copies of Mascagni’s plates for the grand anatomy to St. Helena and continued working on the project in his spare time. Napoleon took a great interest in the anatomy and even consented to have it dedicated to him; however, the emperor died in May 1821, prior to the completion of Antommarchi’s editorial labors. Antommarchi directed Napoleon’s autopsy, cast Napoleon’s death mask, and later published best-selling books about his experiences with the late emperor. Since he could not dedicate his edition to the living man, Antommarchi dedicated his edition of Mascagni’s grand anatomy to the emperor’s tomb on St. Helena. (Napoleon’s body remained on the island until 1840, when it was moved to a tomb created for him in Paris.)

Upon Antommarchi’s return to Italy, as he recounts in his preface (p. v), he received an offer from the private company and Mascagni’s heirs,

where they proposed to surrender to me in totality the copies of the Prodromo, the copperplates for that work, those of the grand Anatomy, as well as all the papers relating to it. They asked the sum of eight thousand Tuscan crowns, to be paid over time, for which they would take suitable security. The Mascagni family, convinced that it would be advantageous to the buyer of these two works to have the copperplates and remaining copies of
Mascagni's "Treatise on the lymphatic vessels" [1787] and the artists' anatomy, also proposed that I purchase these works for half the sum indicated on the prospectus.

Before this could be accomplished, however, Antommarchi was informed by M. Moggi, one of the private company's representatives, that the company had decided not to go through with the deal, and that it wanted to dissolve itself. Antommarchi then went to Florence to propose another arrangement with the Mascagni family:

I next spoke to the Mascagni family and offered them seven thousand five hundred crowns in place of the six thousand five hundred that the company would have paid them. We were soon in agreement, the papers were drawn up and ready to be signed; but Moggi, who was the prime mover in this whole affair, had different ideas. Authorities intervened and refused to sanction the transaction. "Since you are forbidding me to purchase, then you take over. — We don't want to. — My work? — You have it. — I will use it. — You are free to do so. — Let us quit. — We ask nothing better." This was done; we appeared before the magistrate, who declared the company dissolved. But the operation had already passed into other hands; I could not have it for seven thousand five hundred crowns: they had sold it for three thousand. The Mascagni family was paid off, I owed nothing to the new company; I prepared to take advantage of my work.

The Mascagni family sold the copperplates of the grand anatomy to three professors at Pisa who began preparing their own edition of the work; this edition, containing 44 engraved illustrations and 44 outline plates (compared to 48 hand-colored plates and 35 outline plates called for in our edition) was published between 1823 and 1832 under the title \textit{Anatomia universa}. In the meantime Antommarchi proceeded to Paris where he arranged to have his versions of the Mascagni plates lithographed by de Lasteyrie and issued under the title \textit{Planches anatomiques du corps humain}. It is clear from his preface that Antommarchi believed he had full authority to publish his edition—which, because of his close working relationship with Mascagni, may be closer to Mascagni's original intention than the Italian version. Choulant, who provided an incorrect collation of Antommarchi's edition, objected to the fact that Antommarchi left Mascagni's name off the title page, but otherwise appears to have agreed.

If one thinks of the \textit{Anatomia universa}, edited by the three Pisa professors, as an adaptation of Mascagni's plates according to the ideas of the three editors, he may, on the other hand, look upon Lasteyrie's lithographed edition as Antommarchi's adaptation, evidently prepared by him at St. Helena for his edition of Mascagni's plates (Choulant, p. 319).

First Edition of Grotius’s scholarly edition of the Leiden Aratea illuminated manuscript, now in the Leiden University Library. For this edition, Grotius, then only seventeen years old, had engraved reproductions made of the images in the Leiden Aratea, an astronomical manuscript written in 816 containing some of the earliest extant artistic depictions of the Greek constellations. These Grotius reproduced with type reproductions of the text facing the images in the manuscript. For this reason, Grotius’s edition is considered the first printed facsimile of a medieval illuminated manuscript. The Leiden
Aratea images, probably copied from a fourth or fifth century manuscript no longer extant, illustrate a Latin adaptation by the Roman general Germanicus (15 B.C.E. – 19 C.E.) of Aratus’s popular didactic poem *Phainomena*, composed circa 275 B.C.E., which describes the constellations individually and gives their positions in the celestial sphere. The astronomical information in Aratus’s poem is by no means accurate, and the anonymous artist of the Leiden Aratea likewise made no attempt to place the stars in their correct positions, so that the images cannot be considered true star charts. However, the beautiful engraved versions prepared for Grotius’s edition by Dutch painter Jacques de Gheyn II had considerable influence on the development of Western astronomical iconography, being much imitated in works such as Johann Bayer’s *Uranometria* (1603). Lachièze-Rey and Luminet, *Celestial Treasury*, p. 83. 43455

First Edition. In 1853 the Swedish engineers Georg and Edvard Scheutz constructed their first successful working Difference Engine, a calculating and printing machine based on Babbage’s designs and research. Babbage applauded the Scheutzes’ efforts and did his best to publicize their machine, as he did in this address to the Royal Society in which he gave a brief summary of the Scheutz machine’s construction, noted that it had won a gold medal at the Paris Exposition, and chided the Royal Society for failing to honor the Scheutzes in similar fashion.

Sweden has thus secured for herself the glory of having been the first nation practically to produce a machine for calculating Mathematical Tables by Differences, and Printing the Results. Wealthier and more powerful nations will regret that the country of Berzelius should thus have anticipated them, in giving effect to an invention which requires for its perfection the tools of nations more highly advanced in mechanical science. But there is still left to them the honor of acknowledging the services of a foreigner, from which the richest and most commercial countries will derive the greatest advantage (p. 8).

The Origins of Babbage’s Reputation for Irascibility

Second edition, and rare on the market. Toward the end of his life Babbage began conducting his celebrated battle with street musicians—“Organs, brass bands, fiddlers, harps, Punch [and Judy shows], pantomime, monkeys, military, dancing and musical, athletes, ladies and gentlemen walking on stilts” (quoted in Hyman, Charles Babbage, 247)—whose invasion of his once-quiet neighborhood was seriously disturbing his peace. Unable and unwilling to abandon his home of nearly forty years and his extensive workshops housed nearby, Babbage fought back against the street performers in every way possible, having several of them arrested, attacking them in print, and helping to get an act passed in Parliament “for the better regulation of Street Music within the Metropolitan Police District.” This final public crusade of Babbage’s life made him the butt of ridicule and left him with a reputation for eccentricity and irascibility that persisted for over a century after his
death. This reputation turns out to have been at least partly undeserved, however: In 1983 Babbage’s autopsy report was rediscovered among some family papers; it shows Babbage to have suffered from a form of arterial disease that is now known to cause degeneration of the inner ear, resulting in a hearing disorder. This might have been the source of Babbage’s acute sensitivity to noise and intolerance of discordant disturbances.

Although the “Chapter” is advertised as an extract from Babbage’s *Passages from the Life of a Philosopher*, both the first and second editions were published in advance of the book. These two editions appeared in 1864 under the imprint of John Murray, who was also planning to publish the *Passages*, until his objection to a slightly off-color anecdote in the book caused him to pull out at the last minute. A third edition of the “Chapter” was issued in the same year by Longman, the eventual publisher of the *Passages*. Van Sinderen 1980, no. 76. Origins of Cyberspace 83. 39004.
The First Book on the Chinese Language Published in Europe

First Edition of the first book on the Chinese language published in Europe. Bayer, a scholar of classical and Near Eastern languages, was professor of Greek and Roman antiquities at St. Petersburg's Academy of Sciences between 1726 and 1737. At the age of nineteen he was “overwhelmed with a desire to learn Chinese” and spent the next seventeen years studying and collecting everything he could find relating to the language with the intent of “[making] up some kind of dictionary and some introduction to the rules of the Chinese language and to Chinese literature” (quoted in Spence, *Chinese Roundabout: Essays in History and Culture*, p. 3). This was an extremely difficult task, as the Jesuits, who were the first Europeans to gain a foothold in China, had a quasi-monopoly on Sino-European relations and thus had a proprietary interest in keeping information about the Chinese language to themselves. “In the course of time, however, a few Jesuits visiting Europe came to give away some bits of the secret, and two or three copies of handwritten missionaries’ dictionaries had found their way into great libraries” (Lundbaek, p. 2). Bayer made use of what information he could find to compile his *Museum sinicum*, which included not only his attempt at a Chinese dictionary and grammar, but a 145-page introduction containing a history of Western Chinese studies up to the time of writing.
There are two things that need to be said [about the Museum sinicum]: It was not possible to learn to speak or read Chinese from Bayer’s book; secondly, Bayer was perfectly and painfully aware of that fact and states it many times in his book.

Why then publish it? Bayer felt, and he was supported in this feeling by his old friend the great Lacroze in Berlin, as well as by his new friend Theophanes, the learned archbishop of Novgorod, that it was his duty to do so. There were no books about the Chinese language on the market. He had had access to information about that language because he had happened to study in the Royal Library in Berlin, where some handwritten material about the Chinese language was kept. It was not very much and in spite of all his endeavors, Bayer certainly did not come to “know Chinese.” But he felt that he simply had to arrange the information he had gathered together, to collect his thoughts and sit down and write a text that could be printed and published, thus making it possible for others to go on with his work (Lundbaek, p. 3).

Lundbaek, T. S. Bayer (1694-1738): Pioneer Sinologist, pp. 1–7, 43781

First Edition of this extremely rare work on leprosy printed in the French Caribbean colony of Guadeloupe, with only two copies recorded in OCLC (none in the U.S.) and one in the French union catalogue. In the early 1870s Brassac, a military physician, was sent by the French government to Guadeloupe to investigate the leprosy treatment method devised by Louis Daniel Beauperthuy (1807–81). Beauperthuy is best known today for being the first to suggest that yellow fever is transmitted by mosquitoes (see Garrison-Morton, *com* 5454.1), a hypothesis that he extended to malaria, leprosy and other tropical diseases (unfortunately Beauperthuy failed to recognize the microbial or parasitic nature of these diseases, believing them to be caused by the injection of decaying animal or plant matter). Although Brassac denounced Beauperthuy’s mosquito-vector theory of disease transmission, his report was instrumental in spreading knowledge of the theory throughout the Caribbean. Beauperthuy de Benedetti, “Beauperthuy et la découverte de la transmission de la fièvre jaune par les moustiques,” *Histoire des sciences médicales* 4 (1970): 31–40. 43809

The First “Digital” Type Font

9. **Boze, Claude Gros de** (1680–1753) and **Paul Tallement** (1642–1712). *Médailles sur les principaux événements du règne de Louis le Grand avec des explications historiques.* Folio. [2], 289 ff., including engraved frontispiece; printed on rectos only. Text engravings, including vignettes, medals and borders. Paris: Imprimerie Royale, 1702. 440 x 287 mm. Original red morocco, gilt spine, gilt royal arms on front and back covers, all edges gilt, hinges cracking, small chip in upper spine; preserved in a cloth folding box. Moderate toning, a few marginal dampstains, two or three small marginal tears, but overall a very good to fine copy. Some additions in an early hand to the errata on final leaf 289v. $7500

First Edition, variant with line 9 of the title reading “Par l’Académie des Inscriptions & Médailles.” This grand and imposing publication, illustrating commemorative medals struck during the reign of Louis XIV, is an important milestone in the history of typography: It marks the introduction of the *Romain du Roi*, the first “transitional” typeface, characterized by flat, unbracketed serifs, a greater emphasis on verticality and a higher contrast between thick and thin strokes. Commissioned in the 1690s by Louis XIV for use by the Imprimerie Royale, the typeface, designed by Philippe Grandjean, was the first to base its letterforms on a mathematical grid rather than on the more organic “old style” forms developed in the fifteenth century. As such, the *Romain du Roi* has been described as “the first digital font, and at least the first mathematically defined type” (Devroye).
The Médailles was an expensive tour-de-force of printing, with each copy costing 400 livres to produce. Each text page contained, besides letterpress, at least three separate copperplates: An engraved border, separate engravings of the obverse and reverse of a particular medal, and engraved vignettes used when necessary to fill space. To print the letterpress a new printing press was designed for the purpose, one that would apply a smooth and even pressure to the type without any lateral movement.

Remarkably, this most elaborate book was the first publication of Claude Gros de Boze (1680-1753), a French scholar, numismatist and bibliophile, who was only 22 years old at the time of publication. It was the beginning of a most distinguished career.

Sources differ as to the size of the edition: Some say 200 copies were printed, others say 500. Most copies were bound in a uniform presentation binding of either morocco (red or dark blue) or stained calf, with gilt ornaments containing the royal arms on the front and back covers, and interlaced decorative Ls on the spine. The edition was not for sale; rather, copies were presented by the king as gifts. A quarto edition, containing smaller versions of the engravings, was published for commercial distribution by the Anisson publishing house in 1702. Mosley, “Médailles sur les principaux événements du règne de Louis le Grand (1702): The making of the book,” Bulletin du bibliophile (2008): 296-350. Devroye, Luc. “Philippe Grandjean De Fouchy.” On Snot and Fonts. N.p., n.d. Web. Accessed 12 Apr. 2016. 43851
Visionary of Artificial Intelligence—Presentation Copy

First Edition. In his famous satire of Victorian society Butler was the first to write about the possibility that machines might develop consciousness through the process of Darwinian evolution, and that they might be able to replicate themselves. These ideas are not only standard themes in science fiction, but have become more and more relevant in science and philosophy as we continue to increase our reliance on computing and artificial intelligence.

Inscribed copies of the first edition of Erewhon are scarce as Butler originally published the work anonymously. The recipient of this copy was Butler’s close friend Henry Thomas Gillson (1837–1929), a solicitor whose chambers at the Temple were close to Butler’s own law offices in Clifford’s Inn. 43807
Very Early Automobile Marketing to Physicians

First Edition of this early advertising brochure from the Cadillac Motor Car Company, promoting its automobiles as being especially suitable for physicians. The modern physician cannot afford to “cling to antiquated methods of transportation” such as horses and trolleys—the only solution to his transportation problem is “the motor car, but it must be a car of the right kind . . . It must be one which requires the minimum amount of attention. It must be durable and able to withstand hard knocks. It should be able to travel as fast as is safe to ride, not necessarily always, but in cases of emergency. It should be able to travel any kind of a road, smooth or rough, muddy or sandy, and it should be able to climb any hill. It should be economical and above all it must be thoroughly reliable and dependable at all times” (pp. 3-4). The brochure illustrates “several styles of the Single Cylinder Cadillac,” including the Coupe (which came with “three oil lamps and horn”) and the Model S runabout, which was offered with optional storm apron, side curtains and rubber or leather top. Prices ranged from $850 to $1350.

Cadillac is one of the oldest American automobile brands, second only to Buick. The Cadillac Motor Car Company was founded in August 1902 and produced its first automobiles in October of that year; it remained an independent company until purchased by General Motors in 1909.
First Publication on the Genetic Code—Rare Preprint Edition

$25,000

The initial description of the linear duplex structure of DNA by James Watson and Francis Crick in the early 1950s was truly a monumental advance. At that time, technology did not exist for isolating a gene, determining its nucleotide sequence, or relating such a sequence to the amino acid sequence of the corresponding protein.
Messenger RNA had not been discovered, and very little was known about protein synthesis. It was evident that there were many different proteins in the cells of each organism, and it was becoming apparent that most proteins consist of a linear sequence of amino acids . . . But how the nucleotide sequence of each gene was related to the amino acid sequence of its encoded protein remained a major unanswered question.

In their landmark 1961 *Nature* paper entitled “General Nature of the Genetic Code for Proteins,” Francis Crick, Leslie Barnett, Sydney Brenner, and Richard Watts-Tobin finally solved the riddle. They concluded correctly that the genetic code is a triplet code, the code is degenerate, triplets are not overlapping, there are no commas (although introns were subsequently discovered), and each nucleotide sequence is read from a specific starting point” (Yarnovsky, p. 815).

The Crick team’s paper, published under a slightly different title in the December 30, 1961 issue of *Nature*, is “admired throughout the science as a classic of intellectual clarity, precision, and force” (Judson, p. 468).

Crick presented this copy of the mimeographed preprint to British geneticist Guido Pontecorvo, professor of genetics at the University of Glasgow, whose pioneering contributions to microbial genetics have also been applied to human genetic analysis. In 1995 Pontecorvo donated this preprint, together with some other items, to be sold in a silent auction organized by Bernard Cohen (one of the names in the “Read by” list on the title) to raise money for scholarships at the University of Glasgow. The money realized from the sale of these materials helped to fund the Pontecorvo Scholarships at the university. Garrison-Morton.com 256.8. Judson, *Eighth Day of Creation*, pp. 467-68. Yarnovsky, “Establishing the triplet nature of the genetic code,” *Cell* 128 (2007): 815-818.
Voyage of the Beagle—Darwin’s First Published Book

13. Darwin, Charles (1809-82). Journal of researches into the geology and natural history of the various countries visited by H. M. S. Beagle . . . [i-iv], [vii] viii-xiv, 615pp. plus pp. 609-629 addenda. 2 folding maps, 4 text wood-engravings. 16-page publisher’s catalogue dated August 1839 plus 8-page catalogue not noted in Freeman. London: Henry Colburn, 1839. 235 x 148 mm. Original dark bluish-green blindstamped cloth (Freeman binding a), spine skillfully and subtly repaired at hinges and extremities, corners a bit bumped. Small tear in second folding map almost invisibly repaired, very minor offsetting from maps, but otherwise a very good, clean copy. $25,000

First Separate Edition, containing the original printed sheets and maps with a new title. Darwin’s first published book, now universally known as The Voyage of the Beagle, “is undoubtedly the most often read and stands second only to On the Origin of Species as the most often printed. It is an important travel book in its own right and its relation to the background of his evolutionary ideas has often been stressed . . . The first issue forms, as is well known, the third volume of The Narrative of the Voyages of H. M. Ships Adventure and Beagle, edited by Captain Robert Fitzroy and published, in three volumes and an appendix to Volume II, in 1839 . . . On its first appearance in its own right, also in 1839, it was called Journal of Researches into the Geology and Natural History etc.” (Freeman, pp. 31-32).
Freeman suggests that the two issues might have been released at the same time:

It has usually been stated that Darwin’s volume was reissued in its own covers later in the same year, because the demand for it was greater than that for the other two volumes of technical narrative. That the demand for it was greater than the rest was probably true, and that it must be considered technically the later issue is certainly correct, because pp. [i – iv] of the preliminaries are cancels and [v – vi], the original volume title, is discarded; the rest, [vii] – xiv, and the text sheets are those of the main work, bearing Vol. III on the first page of each signature. Nevertheless, it is also certain that both were advertised in the same set of advertisements in August 1839 [emphasis ours] (Freeman, p. 34).

The one-volume issue is much rarer on the market than the version published as part of the Narrative. See Freeman for a detailed discussion of the work’s publishing history and bibliographical features. Freeman, The Works of Charles Darwin, 11. 43767
14. **Darwin, Charles** (1809–82). Cabinet portrait photograph by Maull & Polyblank. [London, ca. 1854]. 165 x 148 mm. Archivally framed (frame measures 363 x 308 mm.). Tiny areas of loss at left margin, but fine otherwise. $20,000

Extremely rare portrait by the noted Victorian photography firm of Maull & Polyblank, showing Darwin in middle age, seated and facing to the viewer’s left, with his right hand on a table. This portrait was reproduced as the frontispiece to Francis Darwin’s *Life and Letters of Charles Darwin* (1884), with a caption incorrectly identifying the photographers as Maull & Fox; the firm of Maull & Fox, a successor to Maull & Polyblank, was not established until 1879. During the past 55 or so years we have seen one example each of two different original photographs of Darwin on the market that were taken around the time of first publication of *On the Origin of Species* (1859). This is the only example of this famous portrait of Darwin that we have seen on the market during the past 55 years. 43711

First Edition, second issue. Darwin’s longest work, representing the first two chapters of the projected “big book” on the origin of species of which the *Origin* was an abstract; this was the only section of the “big book” published during Darwin’s lifetime. Along with a detailed discussion of the facts of artificial selection, the work contains Darwin’s hypothesis of pangenesis, in which he tried to provide explanations of hereditary resemblance, inheritance of acquired characteristics, atavism, and regeneration; the theory served as “a point of departure for particulate theories in the later nineteenth century” (*Dictionary of Scientific Biography*).

The first issue of *Variation* has four lines of errata in the first volume and seven lines in the second. The second issue is distinguished by the single line of errata in Vol. I, p. vi; and by the two-line imprint shown on nearly all of the binding spines. Freeman 878. Norman 597. 43753
The Evolution of Man

$9500

First Edition, First Issue, distinguished by the presence of the "Postscript" leaf in Vol. II tipped in after p. viii, and "transmitted" appearing as the first word on p. 297 of Vol. I. Twelve years after the publication of the Origin, Darwin made good his promise to "throw light on the origin of man and his history" by publishing the present work, in which he compared man's physical and psychological traits to similar ones in apes and other animals, and showed how even man's mind and moral sense could have evolved through processes of natural selection. In discussing man's ancestry Darwin did not claim that man was directly descended from apes as we know them today, but stated simply that the extinct ancestors of Homo sapiens would have to be classed among the primates. This statement was (and is) widely misinterpreted by the popular press, however, and caused a furor second only to that raised by the Origin. Darwin also added an essay on sexual selection, i.e. the preferential chances of mating that some individuals of one sex have over their rivals because of special characteristics, leading to the accentuation and transmission of those characteristics. He famously predicted that humanity's ancestors would be found in Africa, a prediction which, in the 20th century, was proved to be one of his most outstanding insights:

In each great region of the world the living mammals are closely related to the extinct species of the same region. It is therefore probable that Africa was formerly inhabited by extinct apes closely allied to the gorilla and chimpanzee; and as these two species are now man's nearest allies, it is somewhat more probable that our early progenitors lived on the African continent than elsewhere (Vol. 1, p. 199).

$4000

A virtually mint copy of the First Edition, and exceptionally scarce in unopened form. This is the only completely unopened copy of a Darwin first edition that we have handled in 50 years. The Power of Movement in Plants represents the fruition of Darwin's longtime interest in the adaptive value of plant movement, which he had first explored in On the Movements and Habits of Climbing Plants (1865). "Assisted by his son Francis, Darwin conducted experiments to show that plant movement was restricted to the shoot or root tip. In Darwin's view,
that movement resembled a habit not unlike instincts in animals” (Sprang, p. 131). Darwin’s researches into plant movement bolstered his argument, first expressed in the *Origin*, that plants and animals shared a common (though extremely remote) ancestor; they also provided the foundation for the study of growth hormones in plants. Freeman, *The Works of Charles Darwin*, 1325. Sprang, “The rise of the ‘life sciences’ and the dismissal of plant life in the late eighteenth and early nineteenth centuries,” in Haekel and Blackmore, eds., *Discovering the Human: Life Science and the Arts in the Eighteenth and Early Nineteenth Centuries*, pp. 115–136. 43766

An Exceptionally Fine Copy of Darwin’s Last Book

First Edition of Darwin’s last book. “[Darwin] showed the services performed by earthworms in eating leaves and grinding earth in their gizzards and turning it into fertile soil, which they constantly sift and turn over down to a depth of twenty inches from the surface, thereby aerating it. He calculated from the weight of worm-castings that on one acre in one year’s time eighteen tons of soil are brought up to the surface by worms. This was a pioneer study in quantitative ecology” (Dictionary of Scientific Biography). Freeman, *The Works of Charles Darwin*, 1357. Norman 603. 43765
19. **Deluc, Jean-André** (1727–1817). Seven autograph drafts of letters, in French, to Joseph J. LeFrançois de Lalande (1732–1807), plus undated autograph document containing instructions for changes and corrections to some engraved plates illustrating a work on the barometer. 25pp. total, not counting blank leaves. [Geneva,] 8 June 1761 – 18 January 1765. 243 x 185 mm. A few spots and stains but very good. Transcriptions of the drafts available. $7500

Autograph drafts of seven exceptionally detailed scientific letters from Swiss geologist and meteorologist Jean André Deluc, who designed the first barometer capable of precise measurement and devised improved rules for using barometers to measure heights, to the prominent French astronomer Joseph de Lalande, editor of France’s astronomical almanac, *Le connaissance des temps*, and author of numerous works on astronomy and other topics. What appears to be the earliest of the drafts is dated June 8, 1761; the remaining drafts are dated 13 July 1761, 3 April 1762, 1 September 1762, 24 December 1764 and 18 June 1765, with an undated draft most likely written sometime between July 1761 and April 1762. These drafts are of particular interest in that they are heavily revised, with words, sentences and even whole paragraphs crossed out and rewritten, giving insight into Deluc’s thought processes as he composed these letters. Also included here is a closely written two-page document containing Deluc’s detailed instructions for adding to or correcting plates illustrating a work on the barometer; this document is not dated, but was probably written around 1765.

At the time of this correspondence with Lalande, Deluc was living in Geneva and managing a business, devoting his limited free time to exploring the Alps and conducting scientific research with his younger brother, Guillaume-Antoine. In 1772 he published his first book, *Recherches sur les modifications de l’atmosphère*, in which he reviewed existing meteorological knowledge, gave instructions for the construction of barometers and
thermometers, and described the use of these instruments in measuring heights. In 1773 Deluc’s business failed and he left Geneva for England, where he found favor with the royal family and was appointed reader to Queen Charlotte. This position gave Deluc enough income and leisure to pursue his scientific interests; several more books followed, the most important being Lettres physiques et morales sur les montagnes et sur l’histoire de la terre et de l’homme (1779). He died at the age of ninety, having spent nearly 70 years doing scientific research.

Deluc’s first two draft letters to Lalande, dated 8 June and 13 July 1761, concern the 1761 transit of Venus across the face of the sun. Transits of Venus, which occur in pairs eight years apart, are among the rarest astronomical phenomena, happening once every 130 years or so; the 1761-1769 transits were thus the most important astronomical events of the eighteenth century. In the previous century Halley and other astronomers had suggested that the solar parallax could be calculated accurately using measurements of the transit taken from multiple locations on the Earth, so prior to the 1761 transit astronomers from all over Europe, including Lalande, coordinated an international effort to gather observations of the event from around the globe. Deluc had met Lalande during the latter’s visit to Geneva shortly before the transit; the meeting inspired him and his brother to make their own observations of Venus and to report them to Lalande for possible publication.

We observed the transit of Venus with two reflective telescopes, one measuring 18 inches between the mirrors and the other 15. I made my observations with the first through a dark glass, and my brother made his observations with the second in a camera obscura where he obtained on a piece of cardboard an image of the sun formed by the telescope . . .

With my telescope I observed, with the greatest precision, the interior contact at 8 hours 44 minutes 39 seconds. My brother, swaying for a moment while observing the images of Venus and the sun, believes himself to have decided a bit too late in fixing this contact at 8 h 44’ 49”; therefore, my observation can be regarded as the correct one. (letter of 8 June; all translations ours).

Deluc and his brother were not able to fix the time of Venus’s exit from the sun with the same precision, as when the planet reached the sun’s outer edge their observations were affected by a “penumbra,” but they were able to measure the relative diameters of the sun and of Venus, noting that the ratio of the two diameters was 13/350. At the end of the draft of this letter is a table comparing the results of five different observations of the transit. In the letter dated 13 July Deluc provides further information about his results, describing the difficulties he had in establishing the correct meridian and the various corrections he had made to his calculations.

In this way, making the necessary corrections for the parallax and the refraction and assuming the declination of the sun to be 23°28’20” we found the height of the pole to be 46°3’44” instead of the 46°12’ that had previously been estimated. Not having the Connaissance des temps for this year, we couldn’t know precisely the sun’s declination at the time of observation; it is probably a bit more than we estimated and this surplus if there is one should be added to the height of the pole . . .

In the following draft (undated) Deluc mentions a fossil sea urchin (Echinite) that he had presented to the Académie des Sciences, and about which he had written a paper at Lalande’s request. He then mentions, for the first time in this correspondence, the barometric researches for which he is best known:
I'm working on another memoir with a much greater aim; it's the result of several years' work, during which I have spared nothing in gaining a nearly exact knowledge of the relationship between the lowering of mercury in a barometer and the height of the place in which an observation is taken . . . I already had lots of material on the subject when M. de la Condamine came to Geneva in 1756. He was good enough to make me the same invitation in relation to this work that you made to me in regard to the Echinite. Perhaps this will oblige me to communicate my memoir to him first when it is finished; however, it is possible that over the past five years this has completely slipped his mind . . . I will take the liberty of also sending you this work . . .

The memoir on the barometer mentioned here is probably a precursor to Deluc's 1772 *Recherches sur les modifications de l’atmosphère*, a work that contained several of Deluc's previously published letters and articles on this subject.

In the draft dated 3 April 1762 Deluc lists several corrections to be made to "M. Ingram's" engraving of his Echinite; the artist mentioned here is most likely John Ingram (1721-ca. 1771), an English engraver who worked in Paris.

In the draft dated 24 December 1764 Deluc thanks Lalande for preparing an extract of his memoir on the barometer and offers a few corrections to the latter's account of how the thermometer is used in Deluc's method of measuring heights:

> You have combined, Sir, two functions of the thermometer which are necessarily distinct in my method of measuring heights: the one concerns the correction of the effect of heat on the barometer . . . the other function of the thermometer has to do with the influence of heat on the air; the foundation of this depends on different experiments by which I discovered that for every degree of heat increase, using M. Reaumur's scale, the volume of a mass of air increases by 1/215 over its original volume . . .

He also requests that the title of his memoir be changed to reflect the revisions and additions he has made to it. In the final draft in this collection, dated 18 June 1865, he thanks Lalande for granting his request and adds some thoughts on the thermometer:

> . . . modern physics has profited, it is true, by the invention of the thermometer, but there remains one thing to accomplish which might be the most difficult for reasons less physical than moral, and this is that there be no more than one kind of thermometer. I have particularly insisted on this point, and I have applied myself to develop the reasons for the preference I have given to mercury, as well as the means of establishing the fundamental principles of each division . . .

Deluc mentions a number of prominent scientists in these drafts: Charles Marie de La Condamine (1701–74), the French geographer and mathematician whose measurements of degrees of latitude at the equator helped to prove Newton's theory that the earth is flattened at the poles; Georges Louis Le Sage (1724–1803), a Genevan
20. **Descartes, Rene** (1596–1650). *De homine figuris et latinitate donatus a Florentio Schuyl.* 4to. [36], 121 [i.e., 123], [1]pp. 10 engraved plates; overlay flaps present. Leiden: ex officina Hackiana, 1664. 205 x 160 mm. Vellum ca. 1664, title in ink on spine, a few tiny holes along hinges. Lower margin of title restored not affecting text, minor foxing and toning, but very good. 20th century bookplate of Dr. Robert Sonnenschein. $2750

Second Latin edition of the first European textbook of physiology, and “the first attempt to present systematically a coherent description of bodily responses in terms of actual—or hypothetical—neuro-muscular structures” (Fearing, *Reflex Action* [1964], pp. 18–28). In the first two parts, “On the bodily machine,” and “How the machine moves itself,” Descartes puts forth his theory of bodily automatism—the origin of the “machine man” or “robot” concept.

Although he originally conceived *De homine* as a physiological appendix to the *Discours sur la méthode* (1637), Descartes suppressed the work, together with his *Le monde...* (1664), after the trial of Galileo before the Holy Office (1633). What was heretical about Descartes’ views was his assertion that the body of man, like that of lower animals, could be understood as a machine, and that what distinguished man from lower animals was the presence of an immortal soul, the location of which Descartes argued was in the pineal body.

More than any other physiological treatise, Descartes’ *De homine* first expressed concepts of neuro-muscular function which are acceptable in their major outlines to present day physiologists. Descartes is usually credited with making in *De homine* “the first descriptive statement of involuntary action which bears a recognizable resemblance to the modern concept of reflex action” (Fearing). Other historians, such as Brazier, in *The Historical Development of Neurophysiology*, definitely credit Descartes with the invention of the reflex concept, although his first use of the actual term “reflex” appears in the *Traité des passions de l’âme* (1649). Norman/Grolier Medical Hundred, 31 (first ed.). Garrison-Morton.com 574 (first ed.). Guibert, *Descartes*, pp. 199–200.
21. Dibdin, Thomas Frognall (1776–1847). The bibliomania; or, book-madness; containing some account of the history, symptoms, and cure of this fatal disease . . . iv, 87pp. London: Longman, Hurst, Rees and Orme, 1809. 214 x 124 mm. 20th century half calf, marbled boards, a few tiny scuff-marks on back cover. Light toning but very good. With an Autograph Note signed by Dibdin, dated Jan. 25, [18]41, tipped to the front pastedown, mended with clear tape. $1500

First Edition. “Dibdin’s Bibliomania, first published in 1809, is an anthem to the printed book, a warning to the unwary about the perils of obsessive book-collecting, and the confessions of a rabid book-collector” (Danckwerts, p. vii). Written in less than a month, The Bibliomania marks “the first full flowering of Dibdin’s love affair with books” (Windle and Pippin, p. 35); it had the effect of “producing much innocent mirth and exciting a general curiosity after rare and precious volumes” (Dibdin, Reminiscences of a Literary Life, p. 272). Dibdin, a clergyman and inveterate book-lover, was a lively and engaging writer whose works enjoyed great popularity and helped to stimulate enthusiasm for book collecting in the nineteenth century. The autograph note tipped into this copy reads: “Good Mr. Warren, If I had not been cheated of £37.10 that Monday you would have had your £5 with fresh boards last week. As it is, please to wait until Saturday next. Always your obliged T. F. Dibdin.” Danckwerts, “Introduction,” in Dibdin, The Bibliomania (2004), pp. vii–xxxvi. Jackson, Thomas Frognall Dibdin: An Annotated List, 16. Windle and Pippin, Thomas Frognall Dibdin: A Bibliography, A11a. 42460
22. **Dibdin, Thomas Frognall** (1776-1847). Bibliomania; or, book-madness: A bibliographical romance, in six parts . . ix, [3], 782, [2, incl. errata]pp. Engraved plate, text illustrations. **Extra-Illustrated Copy**, containing 44 inserted engraved plates (some folding) mounted in passe-partout, 4 pieces of printed matter bound at the end, and 4 manuscript items, including an **Autograph Letter signed** from Dibdin to English printer and author John Nichols (1745-1826), dated May 21, 1811; Nichols is cited in the general index. London: for the author by J. McCreery . . and sold by Messrs. Longman, Hurst, Rees, Orme, and Brown, 1811. 222 x 138 mm. Full modern gilt-paneled morocco. Minor offsetting from plates, margin of leaf 2K3 repaired not affecting text, letter to Nichols repaired, but very good. Lightly annotated in a contemporary hand (possibly that of John Bowyer Nichols), mostly suggesting the true identities of individuals described in the book under “romantic names” (but see also the reference to “Dr Dibdin” in a note [p. 648] relating to an engraving by Thomas Stothard).

Second edition, extensively revised and expanded; inscribed at the upper edge of the frontispiece, in pencil in Dibdin’s hand, “with the Author’s Compts.” This is the regular-paper issue, printed in an edition of 700 copies. Our lavishly extra-illustrated copy includes an autograph presentation letter from Dibdin to printer and author John Nichols, longtime editor of the *Gentle-
man’s Magazine and a noted antiquary, who is cited in the general index to Dibdin’s book. The letter, dated May 21, 1811, reads: “My dear Sir, I beg your acceptance of this book-mad volume; and if you should deem it deserving of a niche in your critical department of the Gent. Magazine, you will be pleased to speak of it just as you feel: bitter medicine being as wholesome as those of a more palatable nature . . .” Nichols must have felt that the work deserved notice, as the Gentleman’s Magazine published reviews of it in Vols. 81 (1811) and 82 (1812). Also included in the volume are three different hand-written dramatis personae, one of which was possibly written by Nichols, setting out the true identity of the bibliophiles who figured in the book, together with a letter from politician and author W[illiam] Hodgson (1754-1851) to Nichols thanking him “for your obliging information” about the identities and promising “that the names shall not be made public.” The three keys differ from one another in several ways, and supplement the information provided in the most extensive yet published, that in M.V.de Chantilly’s 2001 edition of The Bibliomania. Also in the volume is the autograph signature of Horace Walpole (“Exr. H Walpole”), laid down on a leaf facing p. 715. Tipped in above this is an undated printed extract (2 pp., paginated 85-86) headed “Strawberry Hill, Middlesex.”

For the connection between Dibdin and Nichols see Tributes of Respect to John Nichols (1858; Windle & Pippin B16), which reproduces Dibdin’s letter of condolence on Nichols’ death; and the essay “Visit to an octogenarian” (first published in the Gentleman’s Magazine, August 1823, pp. 102-104, under the name “Capricornus”), in which Nichols, as “Sylvanus” is described as possessing “sound principles, and the respect of all those whom we have long known and reciprocally loved.” and praised for “that perfection of intellectual vision which all his friends acknowledge it is his happiness to enjoy.” Jackson, Thomas Frognall Dibdin: An Annotated List, 18. Windle and Pippin, Thomas Frognall Dibdin: A Bibliography, A11c. 40918
Landmark in Hematology, Oncology, Bacteriology, Medical Microscopy and Photomicrography

23. **Donné, Alfred François** (1801–78). *Cours de microscopie complémentaire des études médicales*. Text and atlas. [4], ii, [2, incl. errata], 550, pp. (text); 30pp. plus 20 plates engraved by Ouvret after micro-daguerreotypes taken by Léon Foucault (1819–68), original tissue guards present. Paris: J.-B. Baillière [etc.], 1844–45. 214 x 130 mm. (text); 436 x 300 mm. (atlas). Text in 19th century quarter morocco, mottled boards, light edgewear; atlas in original printed boards, new morocco spine, light rubbing and edgewear, a few minor stains; the two preserved in a cloth folding box. Minor foxing, text with library stamp on title and 3 or 4 other leaves, atlas with small library stamp on title and verso of each plate but very good overall.

First Edition of a major landmark in the fields of hematology, oncology, bacteriology, medical microscopy and photomicrography. Donné, a French public health physician, began teaching his pioneering course on medical microscopy in 1837, a time when the medical establishment remained largely unconvinced of the microscope’s usefulness as a diagnostic and investigative tool. In July 1839 Louis Daguerre, one of the inventors of photography, announced to the Académie des Sciences his “daguerreotype” process for creating finely detailed photographic images on specially prepared glass plates. Donné immediately embraced this new art and within
a few months had created not only the first documented photographic portrait in Europe, but also the earliest method of preparing etched plates from daguerreotypes. Donné resolved to incorporate photography into his microscopy course, and in February 1840 he presented to the Académie his first photographic pictures of natural objects as seen through the microscope. “It was Alfred Donné who foresaw the helpful role that projections of microscopic pictures could play during lectures on micrography” (Dreyfus, p. 38).

Over the next few years Donné continued to refine his photomicrography methods with the help of his assistant, Léon Foucault, who would go on to have a distinguished career as a physicist. In 1844 Donné published his Cours de microscopie complémentaire des études médicales (Course of microscopy complementary to medical studies), following it a year later with an atlas illustrated with 86 engravings copied from micro-daguerreotypes taken by Foucault. This extraordinary work was the first biomedical textbook to be illustrated with images made from photomicrographs. Among its noteworthy images are the first microphotographs of human blood cells and platelets, and the first photographic illustration of Trichomonas vaginalis, the protozoon responsible for vaginal infections, which Donné had discovered in 1836.

24. **Dusser de Barenne, Joannes Gregorius** (1885–1940); **Warren Sturgis McCulloch** (1898–1969). Collection of approximately 120 off-prints and related items, including 94 papers authored / co-authored by Dusser de Barenne and 15 by McCulloch. 1911–44. Offprints in original wrappers or without wrappers as issued; bound together in a single volume in library buckram. Some edges frayed, light dust-soiling, but very good. The first item in the volume, Vol. IV, no. 4 of the *Journal of Neurophysiology* (June 1941), bears a *Presentation Inscription* from McCulloch to T. C. Erickson on the front wrapper. Complete listing available on request. $950

First Editions. The distinguished Dutch neurophysiologist Dusser de Barenne is best known for the many new experimental techniques he developed, including “the strychnine method for localization of sensory function, laminar coagulation for analysis of the cortical layers, and the adaptation of electrical techniques for the study of the interaction of specific cortical areas” (“Obituary,” p. 286). This collection includes Garrison-Morton.com 1442, “Experimental researches on sensory localization in the cerebral cortex of the monkey (Macacus)” (1924), in which Dusser de Barenne demonstrated the major functional subdivisions of the sensory cortex.

Between 1934 and 1940 Dusser de Barenne collaborated with Warren S. McCullogh on various neurophysiological investigations, including the study of neuron excitability cycles, which led to the discovery of the electrophysiological phenomenon of extinction. McCullogh would later achieve fame as the co-author, with Walter Pitts, of “A logical calculus of the ideas immanent in nervous activity” (not present in this collection). Our volume contains 94 papers authored or co-authored by Dusser de Barenne, most of them published between 1920 and 1941, and 15 papers authored or co-authored by McCullogh. Also present are two obituaries of Dusser de Barenne and a few papers by other authors. “J. G. Dusser de Barenne 1885–1940 [obituary],” *Journal of Neurophysiology* 3 (1940): 283–292. 43855
Einstein’s Nobel Prize-Winning Paper—The Extremely Rare Offprint

Extremely Rare First Edition of Einstein’s paper on light quanta, for which (along with his 1912 paper on the photo-electric equation) he was awarded the 1921 Nobel Prize for physics. Completed in March of 1905 (Einstein’s annus mirabilis), “On a heuristic point of view about the creation and conversion of light” was the first of four epochal scientific papers published by Einstein that year; the others were his paper on Brownian motion and two papers on the special theory of relativity. “No one before or since has widened the horizons of physics in so short a time as Einstein did in 1905 (Pais, p. 47).

Einstein’s paper on light quanta was the only one of his works that he himself called “revolutionary,” and for good reason: “The heuristic viewpoint of the title was nothing less than the suggestion that light be considered a collection of independent particles of energy . . . Einstein had his reasons for advancing such a bold suggestion, one that seemed to dismiss a century of evidence supporting the wave theory of light. First among these was a negative result: The combination of the electromagnetic theory of light with the (statistical) mechanics of particles was incapable of dealing with the problem of black-body radiation. It predicted that radiation in thermodynamic equilibrium within an enclosure would have a frequency distribution corresponding to an infinite amount of energy at the high-frequency end of the spectrum. This was incompatible with the experimental results, but, worse than that, it meant that the theory did not give an acceptable answer to the problem . . . Einstein showed that his strange proposal of light quanta could immediately account for several puzzling properties of fluorescence, photoionization, and especially of the photoelectric effect” (Dictionary of Scientific Biography).

Einstein submitted his light-quanta paper to the Annalen der Physik immediately upon its completion; it was published in the first issue of Vol. 17, which was distributed on June 9, 1905. A letter from Einstein to his friend Conrad Habicht, written in April 1905, indicates that Einstein had received his allotment of offprints of the paper by that date; thus the offprint, rather than the journal article, represents the true first edition. In his bibliography of Einstein’s works, Weil states that “it seems to be certain that there were few [offprints of Einstein’s papers made] before 1914. They were given only to the author, and mostly ‘Überreicht vom Verfasser’ (Presented by the Author) is printed on the wrapper [as in our copy]” (Weil, p. 4). Weil 6*. Mehra & Rechenberg, History of the Development of Quantum Theory, I, ch. 1.3 (giving a detailed discussion of the paper). Pais, Subtle is the Lord, pp. 364-68. See Printing and the Mind of Man 391. We have not been able to identify who (or what) the inscription “Falter” on the front wrapper represents. 43846
The First Feature Film to Depict Electronic Computing in the Workplace; Extensively Revised Shooting Script

26. Ephron, Phoebe (1914-71) and Henry Ephron (1911-92). The desk set. Shooting final. Typescript (mostly mimeograph) on various paper stocks, but with many leaves actually typed on onion skin and other paper types, and with numerous emendations in pencil on many leaves. 154 ff., pages numbered 1-146 with several additions. Los Angeles: Twentieth Century Fox Film Corporation, 1957. 283 x 221 mm. Original printed folder with brad fasteners, a little sunned, edges a bit frayed. Very good. Preserved in a cloth folding box.

$1500

Original Screenplay for this 1957 romantic comedy directed by Walter Lang and starring Katharine Hepburn and Spencer Tracy; it was one of the first major motion pictures to feature an electronic computer, and the first film to dramatize and satirize the disruptive role of electronic computing in the workplace. The film takes place at the “Federal Broadcasting Network” where Bunny Watson (Hepburn) is the head of the network’s reference library. After the network purchases two “Electro-Magnetic Memory and Research Arithmetical Calculators,” it brings in Richard Sumner (Tracy), the EMERAC’S inventor, to help the network’s employees adjust to the new “electronic brains.” “When they find out the computers are coming, the employees jump to the conclusion the machines are going to replace them. Their fears seem to be confirmed when everyone on the staff receives a pink slip printed out by the new payroll computer. Fortunately, it turns out to be a mistake; the machine fired everyone in the company, including the president” (Wikipedia). IBM, the leading computer manufacturer at the time, assisted in the production of “The Desk Set,” and the movie’s fictional “EMERAC” is an obvious play on UNIVAC, EDVAC and other early computer names. 43803
Invention of the Laryngoscope

First Edition. journal issue, but very difficult to find. García, a singer and voice teacher, invented the first modern laryngoscope and became the first to observe the functioning glottis and larynx in a living human. His device made use of two mirrors, with sunlight serving as the external light source. García’s laryngoscope was first used for medical purposes by Johann Nepomuk Czermak in 1858.

Pioneering the Human Relations School of Management; Inscribed Copy

First Edition. Hartness was an American industrialist and inventor of machine tools who also made pioneering contributions to industrial management. In his Human Factor in Works Management, a reaction to Frederick Winslow Taylor’s Principles of Scientific Management (1911), Hartness set forth three of his basic ideas: “(1) that many of the features of the new approach to management were too mechanistic; (2) that many of the new efficiency engineers were completely ignoring human nature; and (3) that the problem of increasing efficiency included psychology as well as engineering and economics” (Nanda, Management Thought, p. 83). Hartness’s work can be regarded as one of the foundations of the human relations school of management, together with the works of Frank and Lillian Moller Gilbreth. The recipient of this copy was most likely the Harry Lee Coe who received a bachelor’s degree in mechanical engineering from the University of Michigan in 1908.
Discussing his Astronomical Researches and the Work of Horace Benedict de Saussure and William Herschel

29. Lalande, Joseph Jérôme le François (1732-1807). Four letters signed with autograph additions, in French, to Jean André Deluc (1727–1817). Paris, 16 June 1788 – 13 December 1791. 8pp. total, not including address leaves. 198 x 154 mm. (1788 letter); 180 x 115 mm. (remaining letters). Lacunae in two letters where seal was broken affecting one word, portions (presumably blank) cut away from two letters not affecting the text, minor spotting but very good. Transcriptions available. $1500

From Joseph Lalande, one of the foremost astronomers of the eighteenth century, editor of France’s astronomical almanac Connaissance des temps and author of Traité d’astronomie (1764; later eds. in 1771 and 1792) and numerous other works. His correspondent was Swiss geologist and meteorologist Jean André Deluc, who designed the first barometer capable of precisely measuring heights as well as a mercury-based hygrometer. At the time of this correspondence Deluc was living in England, where he held the position of reader to Queen Charlotte.

In the letter dated 16 June 1788 Lalande alludes to the controversy between Deluc and his fellow geologist Horace Bénédict de Saussure (1740-99), who had challenged the validity of Deluc’s barometric findings in his own Essais sur l’hygromètre (1783):

...I send you a copy of the part of M. de Saussure’s letter that concerns the subject you were talking to me about. I will bring you the whole thing but do not say that I have sent you copies, this would look too much like you were sacrificing your opponent (all translations ours).

Lalande also refers to the current astronomical investigations of his friend William Herschel, the English astronomer, who was also an acquaintance of Deluc:
Someone sent me an extract from a memoir by Mr. Herschel in which I was pleased to see that he found the
density of his planet [i.e. Uranus] to be four times larger than it should be following the rule we had discovered
of the inverse square of the distance. I believe that I proved that Venus departed from this so-called rule and I am
glad that this planet does so also.

We have seen here several times the volcano on the Moon, but it seems to us that this is the Aristarchus patch,
bright enough to show by the light of the earth alone.

The memoir referred to here is Herschel’s “On the Georgian planet and its satellites,” published in Volume 78
of the Philosophical Transactions (1788). Herschel had also been investigating what he thought to be one or more
lunar volcanoes, but in May 1788 Lalande wrote to Herschel to tell him that some Parisian astronomers believed
the supposed “volcano” to be in fact the Aristarchus crater, one of the brightest areas on the moon (see The
Scientific Papers of William Herschel, p. xxxviii).

Lalande mentions Herschel twice more in this correspondence. In his letter of 12 March 1791 he thanks Deluc
for sending him notice “of M. Herschel’s new memoir [and?] his idea on nebulae,” probably referring to
Herschel’s “Catalogue of a second thousand of new nebulae and clusters of stars” (Philosophical Transactions 79
[1789]: 212-255). Lalande also expresses his dissatisfaction with the “memoir on the satellites of Saturn,” most
likely Herschel’s “Account of the discovery of a sixth and seventh satellite of the planet Saturn” (Philosophical
Transactions 80 [1790]: 1-20), which announced the discovery of the Saturnian moons Enceladus and Mimas. In
Lalande’s letter of 16 June 1791 he complains that “your neighbor M. Herschel has not responded to me at all
about the calculations of his observations of the satellites of Saturn.” In both letters Lalande begs Deluc to give
him news of both Herschel and his sister Caroline (“la savante miss”), for whom he had great admiration and
respect.

The correspondence also refers to Lalande’s own astronomical researches: In the 1791 letters, Lalande states that
he has found 8000 northern stars and that he, like Herschel, has found stars in Flamsteed’s star catalogue “that
no longer exist.” Lalande had published a revised version of the Flamsteed catalogue in 1783, in which he intro-
duced a system of star enumeration still in use today. 43836
Spectacular 18th Century French Type Specimen Book

30. **Lamesle, Claude.** Epreuves générales des caractères qui se trouvent chez Claude Lamesle fondeur de caractères d'imprimerie. 4to. 91 unnumbered leaves. Paris, rue Galande (au milieu) près la Place Maubert, 1742. 230 x 164 mm. Mottled calf, gilt spine ca. 1742, hinges and extremities rubbed; preserved in a cloth folding box. Light toning but fine otherwise. Old library stamp and shelfmark on title. Bookplate of A. Kuhnholtz-Lordat. $8000

First Edition. “The Epreuves générales des caractères qui se trouvent chez Claude Lamesle, Paris, 1742, and the reissue by N. Gando, 1758, display an interesting collection of types of various periods, some dating back nearly two centuries, and some in the latest fashion. Different faces of the same size are shown, in a manner familiar from the work of P. S. Fournier; for example, we find a St. Augustin ‘Oeil ordinaire,’ ‘Oeil moyen,’ and ‘Gros Oeil.’ The ‘Oeil ordinaire’ is a Garamond, either the original or a close copy . . . Lamesle shows two other interesting types which date back to the sixteenth century, not Garamonds. These are the ‘Cicero Gros Oeil no. XXXIV’ and the ‘Petit Paragnon no LI . . .’” (Johnson, p. 201). The book contains 78 leaves of specimens of letterpress (including Greek, Armenian, Arabic and Hebrew) and 12 leaves of music type. Lamesle, a publisher and type-founder in Paris, purchased the foundry of the Cot family in 1737 and sold it to Nicolas Gando in 1758. Audin, *Les livrets typographiques des fonderies françaises*, p. 44. Bigmore and Wyman, *Bibliography of Printing*, p. 419. Johnson, “The type-specimen books of Claude Lamesle and Nicolas Gando,” *The Library* 54-XVIII (1937): 201-211. 42203]
First Printed Edition of the Book of the Dead,
The First Book Produced by Scribes in Anticipation of Sales

First Printed Edition of the Egyptian “Book of the Dead,” a loose collection of ancient religious / magical funerary texts intended to assist a dead person’s journey into the afterlife. This category of Egyptian papyri was first given that name in this 1842 edition by Prussian archeologist Karl Richard Lepsius, one of the founders of scientific Egyptology. Lepsius’s *Todtenbuch der Ägypter* reproduces by lithography the Ptolemaic papyrus known as “papyrus Turin 1791.” In this edition Lepsius introduced his numbering system for the Book’s texts or “spells,” which is still in use today.

There is no canonical version of the Book of the Dead. The Book’s spells derive from the hieroglyphic funerary texts carved on the walls of royal tombs and later written on coffins; the earliest identifiable spells from the Book, found on the coffin of Queen Menthuhotep, date from about 1600 B.C.E. Around 1550 B.C.E. papyrus copies of Books of the Dead, written in cursive hieroglyphic script, began to be substituted for wall carvings or coffin inscriptions. These were often prefabricated in funerary workshops, with spaces left for the name of the deceased to be filled in later; the Book of the Dead is thus the earliest text that was commercially produced by scribal workshops in anticipation of sale rather than written out on commission from customers. 43554
“Opened up a New Prospect in the Appreciation of Greek Literature”
(Printing and the Mind of Man)

First Edition. The German philosopher and critic Gotthold Lessing was one of the most outstanding representatives of the Enlightenment era; “it was he, more than any other who laid the foundations of the intellectual primacy of German writers and thinkers in the nineteenth century” (Printing and the Mind of Man 213). His *Laokoon*, probably his best-known work, had an enormous influence on the development of art and literary criticism:

[Laokoon] takes its name from the famous statue discovered at Rome in the sixteenth century. It analyzes the differences between the sculptor’s treatment of Laocoon wrestling with the serpents and Virgil’s treatment of the same theme, and from there does on to discuss the limits and limitations of all the arts. It contains the first clear statement of the truth, which is now considered axiomatic, that every art is subject to limitations, and can achieve greatness only by a clear understanding of a self-restriction to its proper function. The most telling passages, and those which have borne most fruit, are those on poetry . . . [Lessing’s] exposition of the themes of Homer and Sophocles is especially effective, and he opened up a new prospect in the appreciation of Greek literature” (Printing and the Mind of Man).
33. **Malpighi, Marcello** (1628-94) and **Carlo Fracassati** (ca. 1630-72). *Epistolae anatomicae*. 12mo. [4], 260pp. 5 engraved plates. Amsterdam: Apud Casparum Commelinum, 1669. 132 x 74 mm. Mottled sheep, gilt spine ca. 1669, front hinge repaired. Old inscription removed from title page; occasional minor staining, but very good. Early ownership inscription on front free endpaper. $1750

First Edition under this title. “Fracassati, Malpighi’s close friend, confidant, and colleague at Bologna, was responsible for assembling these letters for publication. The work contains four letters of Malpighi and two of Fracassati on the brain, tongue, adipose tissues, and skin. The five folding plates illustrate Malpighi’s microscopic investigations of the brain and tongue. Malpighi’s name is celebrated in several eponymous anatomical structures in the kidney, spleen, skin, and lungs. It is in the epistle on the tongue that he described the mucosal layer beneath the epidermis which is now called the Malpighian layer. In ‘De omento, pinguedine, et adiposis ductibus,’ Malpighi reported his observation of the red blood corpuscles. Unfortunately, he mistook them for globules of fat passing into the blood and it wasn’t until 1674 that Leeuwenhoek gave the first accurate description of the erythrocytes” (*Heirs of Hippocrates* 570). The work was originally published in 1665 under the title *Tetras anatomicarum epistolarum*; the 1669 edition added Malpighi’s “De externo tactus organo,” first published separately in 1665. 43847
Late 16th to later 17th Century Notebook of Drugs, Home Remedies and Cures

34. [Medical manuscript.] Collection of medicinal formulas, home remedies, cures, etc., written in Italian in multiple cursive hands. [152]ff., including 30 blanks. N.p., later 16th – later 17th century. 164 x 114 mm. 16th century limp vellum, worn, top of spine and back cover damaged. Some dampstaining and soiling throughout, but overall good.

$3950

This intriguing early medical manuscript may have been a physician’s notebook or a collection of household remedies compiled by one or more families; in any case, the notebook was used and added to from the late sixteenth to the late seventeenth centuries. The earliest date we have found in the manuscript is 1563 (on the verso of the third leaf); the latest date we have noted is 1669 (recto of leaf 123). The first several leaves appear to contain a discussion of ulcers and fistulae; a table of contents appears on leaves 40 – 41; and the following several leaves contain a list of materia medica including chamomile, quinine, cinnamon, fenugreek, anise, etc. 43697
Introducing the Word “Krill” in the Context of Whale Investigations

From naturalist John G. Millais, son of the famous pre-Raphaelite painter J. E. Millais and one of the most respected British ornithologists and bird artists of his time, to fellow ornithologist Joseph I. S. Whitaker, author of The Birds of Tunisia (1905). The letters are not dated, but were written around the time that Millais was working on his three-volume Mammals of Great Britain and Ireland (1904–6), a work notable for containing some of the first scientific studies of whales. Millais mentions his whale investigations in the letter written from Shetland, dated “Fby. (?) 15th”:

Am studying whales & smaller mammals here both very interesting. Whale station half a mile away. I have already drawn B. […] & Megaptera boops [humpback] . . . Pictures of these great beasts are very incorrect in books. Have just returned from a 4 days cruise after whales . . . I saw a big Finner feeding within 20 yards a wonderful sight. He turned over on his side went full speed ahead & took a huge mouthful of “kril”—seemed to take little notice of us & spun round the steamer so fast we could not get a shot at him.

Millais was responsible for introducing the Norwegian word “krill” into the English language: According to the Oxford English Dictionary, the first recorded usage of “krill” in English was in Millais’s Newfoundland and its Untrodden Ways, published in 1907. Millais’s letter most likely was written before that date, as in it Millais discusses his mammal studies and notes that “Vol. I [of Mammals, which appeared in 1904] . . . is now published.”

In the second letter, dated “March 31st,” Millais writes, “I am so glad that you like the ‘Mammals’ & think you will consider Vol. 2 a great deal better in many ways than Vol. 1. The col. plates alone have turned out 50 per cent better.” He warns Whitaker not to assume that “deer and white cattle” are descendants of the extinct wild aurochs; “there is not the smallest assumption that I can see, that they are even remotely descended from Urus (Bos primigenius).” Lastly Millais complains about plagiarism: “I have made a point of giving credit to every man’s work when I have made reference to them, as much as anything else to try & check the selfish spirit of plagiarism which seems to be growing amongst scientific naturalists. It is the commonest thing to come upon whole passages (put into […] words) which are undoubtedly stolen. There is no other word for it.” 43838
Coining the Word “Paleography”

36. Montfaucon, Bernard de (1655-1741). Palæographia graeca, sive de ortu et progressu literarum graecarum . . . Folio. [18], xxix, 574pp. Engraved frontispiece and 9 plates (some folding); OCLC calls for 7 plates total, apparently not counting the frontispiece and the 2 hors texte plates in signature C. Paris: apud Ludovicum Guerin . . . Viduam Joannis Boudot . . . et Carolum Robustel, 1708. 380 x 248 mm. Blind-tooled vellum ca. 1708, front cover warped, bookplate and ownership inscription removed from front pastedown. Frontispiece creased, upper right corners of first few leaves a bit frayed, title a little soiled but a very good, clean and crisp copy. From the library of Swedish diplomat Ulric Celsing (1731-1805), with his inscription, “Ex libris U. Celsing a Constpte & Piastres” on front pastedown. $3750

First Edition of the work that introduced the term “paleography,” and the founding work of Byzantine and Greek paleography in particular. The formal study of paleography and diplomatics (the study of documents) was created by the Benedictine monk Jean Mabillon (1632-1707) in his De re diplomatica (1681); however, the word “paleography” itself was the creation of Mabillon’s pupil Bernard de Montfaucon, who first used it in print in the present work.

“What Mabillon did for the study of medieval Latin documents, Montfaucon, after Mabillon’s death the leading member of the congregation of St. Maur, achieved in the field of Greek studies. His monumental work, published the year after Mabillon’s death, also created a new discipline, that of Byzantine paleography. Like Mabil-
lon's work, his results have had to be modified only in details, chiefly due to the applications of technical inventions such as photography and, in Montfaucon's case, to the discovery of Greek papyri which has immensely widened the scope of modern research. Montfaucon applied his vast knowledge of Greek manuscripts to exemplary editions of the writings of Anastasius, Origen, and John Chrysostom which provided reliable texts, not yet entirely superseded, of these Fathers of the Church and stimulated patristic studies” (*Printing and the Mind of Man* 175). This copy is from the library of Swedish diplomat Ulric Celsing, who served as envoy in Constantinople from 1770 to 1780.
Classic of Blood Transfusion; Inscribed to Verneuil

Second edition, revised and greatly enlarged from the first edition of 1868, which contained only 189 pages. Oré’s work is an excellent and well-documented treatise on blood transfusion, including a comprehensive history of the subject from its beginnings in the seventeenth century to its revival in the nineteenth after a long period of disuse. The nineteenth century witnessed both the first human-to-human transfusion (in 1818) and the beginning of scientific research on how to make transfusion more practicable, including the development of improved transfusion technology (illustrated here in the plates and text wood-engravings) and the use of anticoagulants to prevent clotting. During this time several Continental researchers also began experimenting again with animal-to-human transfusion, which had been practiced briefly in the seventeenth century before being banned in 1670; Oré reported on 150 of these heterologous transfusions, describing the procedure as both efficacious and relatively (!) harmless. He recommended using lamb’s blood, as its red corpuscles are the same size as those in human blood. Oré performed the first successful human intravenous anesthesia in 1874 (Garrison-Morton.com 5672).

Oré presented this copy of his work to French physician and surgeon Aristide Verneuil, who introduced the use of forcipressure (compression with forceps) in the treatment of hemorrhage; his name is also associated with “Verneuil’s disease” of the apocrine sweat glands. Garrison-Morton.com 7215. Peumery, Les origines de la transfusion sanguine, p. 77. 43703
Pasteur at his Most Argumentative; a Very Unusual Letter

38. Pasteur, Louis (1822–95). Autograph letter signed, in French, to Eugène de Masquard (1819–1906). 1 page plus integral address leaf. Paris, 6 October 1868. 212 x 136 mm. Tiny tears and lacunae along folds, fore-edge of first leaf a bit frayed, light spotting but very good. $3850

To agriculturalist and winemaker Eugène de Masquard, one of Pasteur’s most vehement opponents on the question of silkworm disease, which Pasteur had been investigating on behalf of the French government since 1865. The letter remained in the Masquard family until recently and has not appeared on the market before now. The text of the letter was published in Vol. IV, p. 577 of the Oeuvres de Pasteur (1926), but a comparison of the printed text to the original reveals a few small differences, including the date (given erroneously as October 3 in printed version), and the substitution of “par erreur” for the original’s “faussement” and “exagérées” for “fantaisistes.” The original letter also displays three lines heavily crossed out by Pasteur, indicative of his irritated state of mind at the time of writing.

In the 1860s the French silk industry was in serious trouble: once responsible for ten percent of the world’s production, it had become increasingly devastated by a mysterious silkworm blight that caused the industry’s output to fall by a factor of six in the years between 1845 and 1865. Though many experts, including Masquard, were attempting to solve the problem, their efforts had so far failed to uncover either the cause or the remedy for silkworm disease. It remained for Pasteur, the expert on microbes, to discover the true nature of the silkworm crisis. By 1867 Pasteur was able to show that the silkworm disease known as pébrine was caused by a parasite and the disease known as flacherie, which authorities had thought to be a manifestation of pébrine, was in reality an independent disease with its own character and etiology.

In August 1868 Pasteur presented a report to the Ministry of Agriculture containing his findings and recommending methods for combating silkworm disease, including destroying all infected eggs and imposing stricter controls over the environmental conditions in silkworm hatcheries. The report met with some harsh criticism, including from Masquard, who in October 1868 published a derogatory article on the report in the trade newspaper Moniteur des Soies. Angered by this, Pasteur wrote Masquard this uncharacteristically testy reply (our translation):

Sir: You recently wrote to the Director of the Moniteur des Soies, in Lyon, “that you have always greatly admired the motto: Do what you must, come what may, and that you attempt to put it into practice as often as possible.” . . .

Unfortunately, sir, everyone knows that it is easier to publish mottos than to follow their precepts. You have just given a new and curious proof of this well-known truth by sending to the Moniteur des Soies an extract from a Paris scientific journal concerning the report I sent recently to the Minister of Agriculture, an extract that falsely attributes to the report the most fantastical conclusions. Isn’t it your first duty to ask about the accuracy of these assertions prior to having them republished? Shouldn’t the most ordinary proprieties have made you more careful?

Debré, Louis Pasteur, ch. 8. 43770
Early Cinematographic Manual with Developed Film Samples

First Edition of this scarce technical manual of motion picture film developing and printing, issued by the famous French firm founded by the Pathé brothers in the early days of cinematography. By the 1920s the Pathé firm was producing “the requisites for the entire motion picture process; i.e., raw stock, cameras, laboratory equipment, studio and projectors” (Jenkins, “History of the motion picture” [1920], reprinted in Fielding [ed.], Technological History of Motion Pictures and Television, pp. 1–6). The firm’s manual contains detailed technical instructions on motion picture film development and printing, as well as information on several Pathé innovations such as the Pathé-Baby 9.5 mm. motion picture projectors and cameras for amateur use (introduced in 1922), Pathé’s “film inversible” (reversal film), and the firm’s techniques for tinting film stock and for producing full-color motion pictures. A stunning feature of the manual is its set of 107 actual frames of motion picture film, illustrating correct and incorrect development, the effect of temperature on film processing, and the various uses of the “teintures Pathés” with which the firm colored its film stock. The manual’s introduction contains a brief (and adulatory) history of the Pathé firm, and the first chapter is devoted to a description of its factory in Vincennes. 43839
Superb and Very Rare Images of Dinosaurs

40. **Perrot, Aristide Michel** (1793–1879). Tableau des animaux et végétaux existants avant le déluge, rédigé d’après Cuvier, Buckland, de Humboldt, &c. Hand-colored aquatint. Paris: chez Langlois & Leclerq, [ca. 1844]. Image measures 303 x 582 mm., plate mark 498 x 640 mm., sheet 538 x 705 mm. A few tiny fox-marks, traces of mounting on verso, otherwise fine and fresh. $4500

First Edition of this remarkably large and rare 19th-century print illustrating the extinct animals and plants from “before the Deluge”; it includes an extensive descriptive key taken from the *Encyclopédie Bouasse-Lebel: Histoire Naturelle*. According to a publisher’s advertisement in *Leçons élémentaires de botanique* (1844), this print was published separately, and issued in both black and white and in color, with the plain versions selling for 1 franc 75 centimes and the colored versions for 3 francs 50 centimes. We know of only two copies of the print in libraries: at Harvard and at the Vlaamse Erfgoedbibliotheek in Belgium. The image appears to have been unknown to historian of geology Martin Rudwick, as it is not mentioned in his authoritative *Scenes from Deep Time: Early Pictorial Representations of the Prehistoric World* (1992).

“In this Tableau we have represented, as far as possible, the beings that have successively inhabited the surface of the Earth, and the following table, divided into geological eras, gives the chronological order of their existence; but since it would be impossible to group here the figures of the immense quantity of zoophytes, mollusks, crustaceans etcetera that have left traces of their existence in the rocks, we are above all committed to representing the most interesting species, those which are the most characteristic and which serve to determine with the greatest certainty the [stratigraphic] location of the terrains that surround them” (caption; translation ours). The large and beautifully colored image shows 75 numbered animal and plant species dating from the Carboniferous to the Quaternary, including ammonites, a trilobite, an iguanodon, a plesiosaur, a pteranodon, early insect species, a cave bear, a hyena, a mammoth and other extinct mammals. **This is the only example of this spectacular print that we have ever seen for sale.** 43813
The First Illustrated Art Museum Catalogue

41. Pigage, Nicolas de (1723-96) and Christian von Mechel (1737-1817). La galerie électorale de Dusseldorff, ou, catalogue raisonné et figuré de ses tableaux . . . Oblong folio. xiv, [2], 34, [2], 28, [2], 52, [2], 42, [2], 28, [2], 44pp. 30 engraved plates with guards, numbered A – D and I – XXVI, engraved vignettes. Basel: Chez Chrétien de Mechel & chez Mrs. les Inspecteurs des Galeries Électorales à Dusseldorff & à Mannheim, 1778. 286 x 368 mm. 18th century sheep, rebacked preserving original gilt spine, light wear to corners. Stain on plate XII also slightly affecting plate XIII, otherwise very good. Engraved armorial bookplate of Thomas Munro (1819-1901); later bookplate of Peter and Linda Murray, bookseller’s ticket of R. C. Stanes, Chelmsford.

First Edition. “A revolutionary step in the history of museums, museum publications, and the art book” (Gahtgens and Marchesano, p. 33). La galerie électorale de Dusseldorff, an illustrated catalogue of the magnificent art collection of Carl Theodor, Elector of Bavaria (1724-99), was the first publication to contain both illustrations and detailed descriptions of the artwork being recorded; “no other text describing in great depth the individual paintings in a gallery’s collection existed at the time” (ibid.). The Elector’s collection of Italian and
Flemish paintings, including a large group by Peter Paul Rubens (1577-1640), and other important paintings by Vandyk, Giordano, Tintoretto, Carracci, Veronese, Raphael, Corregio, Rembrandt and Reni, were reproduced in the catalogue by engravings showing the paintings in situ on the walls of the Dusseldorf gallery. These engravings, sumptuously printed on thick paper, illustrated the gallery’s innovative approach to staging its paintings: Not only did the gallery abandon the practice of hanging paintings frame-to-frame, “allowing them to preserve their identity as works of art in the space,” but “the principle of hanging paintings in a gallery according to decorative and representational considerations was abandoned in favor of a system of order determined by the history and significance of the artwork themselves, resulting in a history of art” (Gaehtgens and Marchesano, p. 31). The Elector’s gallery can thus be seen as an important ancestor of the modern museum, and its catalogue as a forerunner of the modern museum catalogue. The allegorical frontispiece (plate A, illustrated above) by Nicolas Guibal includes a portrait of Prince Elector Johann Wilhelm von der Pfalz, the founder of the art collection. Gahtgens and Marchesano, *Display & Art History: The Dusseldorf Gallery and its Catalogue* (2011). 42271
Long Autograph Medical Consultation on Tinnitus

42. Piorry, Pierre Adolphe (1794–1879). Autograph document signed, in French, containing a medical consultation on tinnitus 10pp. Paris, 14 February 1854. 232 x 185 mm. Creased along fold lines, slight wear and soiling on last leaf, but very good.

A long and detailed medical consultation by Parisian physician Pierre-Adolphe Piorry, dealing with a difficult problem in otology. Piorry was one of the pioneers of mediate percussion; i.e., tapping the fingers on the surface of the thorax or abdomen to assess the condition of the internal organs. Mediate percussion, one of the five basic methods of clinical examination, was first described in Auenbruger’s Inventum novum (1761); the technique became widely known when Corvisart published his French translation of Auenbruger’s work in 1808. To improve the technique Piorry invented the pleximeter, a small ivory plate interposed between the skin and the physician’s tapping finger to strengthen the sound. In his De la percussion médiate (1828; Garrison-Morton.com 2675) he described this instrument and its use in mapping the location of the organs in the body. Piorry also made improvements to Laennec’s stethoscope and introduced the terms “toxin,” “toxemia” and “septicemia.”

Piorry mentions his method of pleximetry (“plessimé-trisme”) in the present document containing his detailed comments and recommendations in the case of “Monsieur de B.,” who was suffering from tinnitus. Piorry had apparently been asked to provide medical advice for M. de B. without first examining him; after expressing his reservations about this request, which contradicts the requirements of “la médecine moderne,” Piorry recommends first checking to see whether the tinnitus is caused by earwax or some other physical obstruction of the auditory canal. He next discusses the possibility that the patient’s symptoms might be the result of taking too much “sulfate de quinine”; if so, this can be remedied by acidulated drinks and tepid baths. However, Piorry believes that M. de B’s ailment to have been caused by a fever affecting his spleen; to confirm this diagnosis the patient’s spleen must be examined “au moyen du plessimétrisme” (by means of pleximetry). The patient’s myriad other symptoms—chills, headaches, periodic congestion in the head—all can be linked to “une affection splénique.” At the end Piorry stresses his desire to examine M. de B. himself so that he can determine “quelles sont les circonstances organiques qu’il présente.” Sakula, “Pierre Adolphe Piorry (1794–1879): Pioneer of percussion and pleximetry,” Thorax 34 (1979): 575–581. 43762
43. **Plumbe, Samuel** (1795–1837). A practical treatise on diseases of the skin, comprehending an account of such facts as have been recorded on these subjects, with original observations. 8vo. xx, 392pp. Hand-colored engraved frontispiece and plate, folding table. London: Thomas and George Underwood, 1824. 212 x 131 mm. Half calf, marbled boards ca. 1824, rebacked, light edgewear and rubbing. Plate numeral trimmed, light offsetting but very good.

$1500

First Edition and uncommon on the market. Plumbe was one of the most outspoken critics of Wil- lan and Bateman’s morphological system of skin disease classification. In his *Practical Treatise* he presented his own etiology-based system, “in which he attempted to organize his material according to the ‘constitutional causes’ of each disease, along with ‘due consideration of the organic structure and physiology of the part of the skin on which it is seated’ . . . Along with the conflicts between the champions of the morphologic and etiologic approaches to the study of skin diseases, another development of the future was anticipated in the work of Samuel Plumbe—the introduction of anatomic evidence on the macroscopic level in the support of theories of pathogenesis . . . In the next decade [Plumbe’s] anatomic methods and habits of thought were picked up by Erasmus Wilson, improved and incorporated into the British dermatologic ethos well enough to allow the transition to the cellular theories of disease to be made more smoothly in Britain than it was in France, where efforts of the same nature on the part of Pierre Rayer were ignored” (Crissy and Parrish, pp. 34–36). Plumbe was the first to perform manual epilation (hair removal) as part of the treatment for diseases of the scalp. The frontispiece of the *Practical Treatise* illustrates Plumbe’s division of skin diseases into five major categories; the engraved image is printed in reddish ink with other colors added by hand. Crissy and Parrish, *The Dermatology and Syphilology of the Nineteenth Century*, pp. 34–37. Ehring, *Hautkrankheiten / Skin Diseases*, pp. 84–85. 43810
The First Book Devoted to Brain Disorders

First Edition. The first book devoted entirely to brain disorders. Pratensis (originally van de Velde) was the personal physician to Adolf van Bourgondie, margrave of Veere in the Netherlands; he was also the author of several books on topics such as sterility and childbirth. “In 1549, [Pratensis] published his last book, De cerebri morbis, ‘On the Diseases of the Brain,’ a volume of 540 pages divided into 33 chapters and covering every cerebral disorder and disease from headache to dimwittedness, from loss of memory, epilepsy, drunkenness, tremors, and convulsions to frenzy, lethargy, catalepsy, mania, melancholy and love . . . this book was probably the first full-length consideration of all the topics that would later fall within the domain of neurology, as well as much else besides” (Midefort, A History of Madness in Sixteenth-Century Germany, p. 152). Chapter 17 deals with mania, which Pratensis defined as a “mental corruption” caused by an excess of black bile; this condition could be brought about by a number of factors, including too much alcohol, religious fear, covetousness and Lutheranism(!). Pratensis recommended curing mania with diet, herbs, cooling baths, music, and well-regulated exercise and sleep; if these remedies failed, the more recalcitrant maniacs could be subdued with whips and chains. Adams P-2066. Garrison-Morton.com 4511.02. Norman 1740. 43845
Rauch, François Antoine (1762–1837). Régénération de la nature végétale... 8vo. xxxi, [3], 502; 398pp. Paris: Didot, 1818. 198 x 124 mm. Quarter sheep, gilt, c. 1818, a little rubbed. Slight dampstaining & foxing affecting a few leaves at front & back, but otherwise fine. $1500

Second & Best Edition of one of the foundation works of ecology, revised and expanded from the 1802 original, published under the title Harmonie hydro-végétale et météorologique. Rauch, a geographer and engineer, is regarded as the founder of French ecological thought. His Régénération de la nature végétale, written from a viewpoint entirely in agreement with the modern ecology movement, argues that it is necessary to reverse the process of human destruction of the environment, particularly the world-wide destruction of forests, in order to return the planet to a state better supportive of life.

Rauch begins with a consideration of the relationship of forests to weather conditions, surveys the effects of deforestation world-wide on climate and on animal and human populations, and sets out in several chapters steps to be taken: A guided replanting of vegetation, renewal of forests and water sources, and the establishment of governmental agencies in France and all over the globe to observe the environment and take action. He urges the agencies, for example, to consider changes over short periods of time (“to what extant animals and birds are scarcer in the last thirty years” in a particular area), and to attempt regulation of factory fuel sources. In his closing argument he urges the obligation “to conserve the noble economy,” and “to conserve that from which we benefit.” Garrison-Morton.com 7067. 37708

Very Early and Important Manuscripts on Ecology

46. Rauch, François Antoine (1762–1837). (1) Signed manuscript petition, in French, to an unnamed French official, written in a formal secretarial hand, headed “Division des Sciences et des Arts” and “Annales Européennes.” 4pp. Paris, 19 March 1822. 371 x 243 mm. Lower corner of first leaf torn away not affecting text, small tear along spinal fold, but very good. A few annotations, underlinings, etc. in red and green ink. (2) Exposé présenté au Roi le 1er décembre 1823, avec l’hommage en trois volumes, de la première année des Annales Européennes. Manuscript document in a secretarial hand. 1 page. N.p., 1823. 350 x 222 mm. Stain in right margin affecting several words, small lacuna in right margin, but very good. A few annotations in red ink. (3) Annales européennes de physique végétale et d’économie publique. Vol. I, no.
Rauch, a geographer and civil engineer, is regarded as the founder of French ecological thought. He was the author of one of the first ecological treatises, *Harmonie hydro-végétale et météorologique* (1802), which he revised and republished under the title *Régénération de la nature* in 1818 (see previous entry). In this work he pointed out the harm wrought by such destructive practices as deforestation and overfishing, and called for widespread countermeasures, including government regulation, to return the planet to a more harmonious and fruitful state.

In 1821, three years after retiring from the civil service, Rauch founded what can be considered the world’s first ecological journal, *Annales européennes de physique végétale et d’économie publique* (see no. [3] above). Rauch edited the journal and was apparently its primary source of funding; since he was not a rich man, this left his finances in a precarious state. In his 1822 petition (no. [1] above), probably addressed to the French Minister of the Interior, Rauch notes that those landowners who followed his advice to replant their forests have been rewarded by the government with the Cross of the Legion of Honor, while he himself, “who has preached and inspired a thousand similar creations throughout France over the past twenty years, remains forgotten and in need.” His *Annales européennes* has been praised in the *Journal de Paris*, and
the subjects discussed in the first numbers of these Annales have had the good fortune to be judged of such a high order, that your Ministry sent out five inquiries of the highest importance, addressed to the Prefects and to all the scientific societies in the kingdom; the solutions brought forth by these great minds arrived in succession and were immediately sent to the Royal Academy of Sciences . . . However, I continue to multiply and to develop these useful works in a veritable state of penury.

The 110 current subscriptions to his journal, paid for by the Ministry of the Interior, provide only a third of its publication costs; he is thus requesting that the Ministry purchase an additional two thousand subscriptions—“the price of a single painting”—to be distributed to government officials, agricultural societies, provincial magistrates and members of the clergy.

The document dated 1 December 1823 (no. [2] above) contains the text of the letter or address that Rauch delivered to the French king, Charles X, when he presented the king with a copy of the first volume of his Annales européennes. In it Rauch begs the king to recognize and support his efforts to restore France’s damaged ecology:

Today I am greatly honored to present to my sovereign, the tribute of the first volume of the Annales européennes, which encompasses, together with the ineffable harmonies of Nature, the current state of France’s physical economy . . . in these Annales we point out nearly twenty million uncultivated acres, stripped of life and productivity; the kingdom’s waters which no longer possess the twentieth part of the fish that people [had] previously; the most precious vegetation, which withers from the bitterness of modern winds . . . You are, Sire, the admired legislator of modern times. Deign to add to your glorious reign the immortal glory of being also the regenerator of nature . . . The single word, your Majesty, Je le veux, will set off general rejoicing, which will at once give all of France a rich, imposing and incomparable presence, and bless, in the remotest posterity, the dear and venerated name of the best of kings! These, Sire, are the purpose and goal of the Annales européennes.
From the Libraries of Gustav Schwalbe and Herbert M. Evans

First Edition. The classic description of “Recklinghausen’s canals,” the lymph canaliculi or small lymph space in the connective tissues of the body. This copy formerly belonged to the German anatomist and anthropologist Gustav Schwalbe, who was the first to demonstrate that the major pathways to absorb cerebrospinal fluid were lymphatic pathways. This copy was later owned by Herbert McLean Evans, co-discoverer of Vitamin E; see Garrison-Morton.com 1055. Garrison-Morton.com 1108. 40503
Carmina Figurata Word Pictures First Published in Print: The First Type Facsimile of an Illustrated Medieval Manuscript

$17,500

First Edition of this remarkable typographic achievement, the first attempt to reproduce a medieval manuscript in type. Rhabanus, a Benedictine monk who became the archbishop of Mainz, wrote his *De laudibus sanctae crucis* circa 812 – 813; the work “consists of twenty-eight poems—carmina figurata or encrypted or figured poems in praise of the holy cross set out in squares, so that the number of letters in
each line equals the number of lines... Selected letters in these grids are highlighted in color to form various figures. At the same time these highlighted letters, when read together, constitute the embedded texts. Some of the figures are simple—borders, crosses, various letters—others more elaborate” (Schipper, p. 3). A later section, added in the early 830s, contains prose paraphrases of the poems. These poems became much admired and often copied in the Middle Ages. In Wimpfeling’s edition Rhabanus’s figured poems are rendered using a combination of ordinary type, metal rules and woodcut figures, with the highlighted portions printed in red. Among the most elaborate of the woodcut images are those representing the Emperor, Christ crucified, flowers, the symbols for the Evangelists, and several variations of the Cross. Each figured poem is followed by the same poem printed in ordinary format for easier reading; the prose paraphrases are at the end of the book. Adams R-3. Fairfax Murray (German) 350. Schipper, “Rabanus Maurus and his sources,” in Schooling and Society: The Ordering and Reordering of Knowledge in the Western Middle Ages, pp. 1–22. 43509
Ridley, Humphrey (1653–1708). *Anatome cerebri, mechanicam hujus atque physiologiam comprehendens...* In *Ephemeridum Academiae Caesareo-Leopoldinae naturae curiosorum. Appendix ad annum IX & X, decuriae III* (Nuremberg: C. S. Froberg, 1706), pp. 76–164; 6 engraved plates. Whole volume, 4to. [4], 164 pp. 198 x 160 mm. Modern vellum. Light toning, tiny wormholes in first few leaves, but very good. $2500

First Edition in Latin of Ridley’s *Anatomy of the Brain* (1695), which was the first original treatise on neuroanatomy published in the English language. “Ridley described the venous anatomy of the eponymous circular sinus in connection with the parasellar compartment. His methods were novel, unique, and effective. To appreciate the venous anatomy, he preferred to perform his anatomical dissections on recently executed criminals who had been hanged. These cadavers had considerable venous engorgement, which made the skull base venous anatomy clearer. To enhance the appearance of the cerebral vasculature further, he used tinged wax and quicksilver in the injections. He set up experimental models to answer questions definitively, in proving that the arachnoid mater is a separate meningeal layer. The first description of the subarachnoid cisterns, blood-brain barrier, and the fifth cranial nerve ganglion with its branches are also attributed to Ridley” (Thakur et al., “Humphrey Ridley [1653–1708]: 17th century evolution in neuroanatomy and selective cerebrovascular injections for cadaver dissection” [abstract], *Neurosurgical Focus* 33 [2012]).

This Latin translation of Ridley’s work, which appears to have been overlooked by our standard sources on neurology, was prepared by Michael Ernst Etmmüller (1673–1732), professor of medicine at Leipzig University. The Latin version includes Ridley’s memoir on the motion of the Dura mater, “Experimentum anatomicum ad veram durae matris motus causam detegendum institutum,” originally published in the *Philosophical Transactions*, vol. 23 (1702–3). 43849
7pp. Woolwich, October 2, 1846. 179 x 113 mm. Fine. $750

From Edward Sabine, one of the key figures in research on terrestrial magnetism in the 19th century. At the behest of the British government, Sabine established a system of magnetic observatories throughout the British Empire and spent much of his life analyzing the data they produced; his efforts resulted in the most complete magnetic survey of the globe as was then technically possible. His correspondent was George Washington Keely, professor of mathematics and natural philosophy at Waterbury (now Colby) College in Maine, who also worked on the U.S. Coast Survey in the 1850s.

Sabine had apparently agreed to help Keely purchase a magnetic surveying instrument known as a dip circle, and much of the letter is concerned with this transaction:

I only rec’d your dip circle from Mr. Barrow a few days ago: one has to wait a very long time if one desires to have an instrument finished under the eye of the Artist himself . . . I think you will find reason to be much pleased with it: the microscopes are not adjusted to focus, but that is a small matter for you to do: the axles of the handles seem very perfect, & are very hard, so that they will not soon be worn out. There are two pairs, one pair for the dip; the other pair for the total intensity by Dr. Lloyd’s statitical method. You will find these extremely useful in your excursions . . . Captain Lefroy has taken charge of the instrument & will deliver it to Professor Renwick of Columbia College to whom you will be so good as to send your directions for its being forwarded . . . Captain Lefroy will also give Mr. Renwick for you a copy of the magnetic survey which we have just printed a portion of your continent. It is done on the large scale and will of course admit of separate parts being carried out with a greater precision—this is particularly the case with the region north of you to the St. Lawrence, and East to the Atlantic . . .

“Mr. Barrow” refers to instrument maker Henry Barrow (1790-1870); “Dr. Lloyd” refers to Irish physicist Humphrey Lloyd (1800-1881), provost of Trinity College, Dublin and head of the College’s magnetic observatory. “Capt. Lefroy” refers to John Henry Lefroy (1817-90), who worked under Sabine supervising magnetic observatories in Canada and surveying the magnetism of the Canadian northwest. “Professor Renwick” refers to James Renwick (1790-1863), professor of natural history at Columbia College, New York and author of several widely used textbooks on natural philosophy, chemistry and mechanics. 43804
The Beginning of Organized Theoretical Principles for Animal Ecology, Inscribed to William Morton Wheeler

First Edition. This book represents the beginning of organized theoretical principles for animal ecology, including Shelford’s “law of toleration” or “law of tolerance.” “Analogous to the physiologists’ law of the minimum [developed by Liebig], this principle explained limits to the occurrence of a species with whatever physical factor exceeded its tolerance” (Dictionary of Scientific Biography). Shelford’s book also represents “the first systematic attempt to codify terrestrial animal communities” (Elton, The Pattern of Animal Communities, p. 32).

The Most Famous Theoretical Paper in the History of Computing

First Edition, with Turing’s Correction Published the Following Year. Alan Turing’s theoretical paper “On computable numbers” is undoubtedly the most famous theoretical paper in the history of computing. It is a mathematical description of what Turing called a universal machine—an imaginary computing device designed to replicate the mathematical “states of mind” and symbol-manipulating abilities of a human computer. Turing conceived of the universal machine as a means of answering the last of the three questions about mathematics posed by David Hilbert in 1928: (1) is mathematics complete; (2) is mathematics consistent; and (3) is mathematics decidable.

Hilbert’s final question, known as the Entscheidungsproblem, concerns whether there exists a definite method—or, in the suggestive words of Turing’s teacher Max Newman, a “mechanical process”—
that can be applied to any mathematical assertion, and which is guaranteed to produce a correct decision as to whether that assertion is true. The Czech logician Kurt Gödel had already shown that arithmetic (and by extension mathematics) was incomplete. Turing showed, by means of his universal machine, that mathematics was also undecidable.

To demonstrate this, Turing came up with the concept of “computable numbers,” which are numbers defined by some definite rule, and thus calculable on the universal machine. These computable numbers “would include every number that could be arrived at through arithmetical operations, finding roots of equations, and using mathematical functions like sines and logarithms—every number that could possibly arise in computational mathematics.” Turing then showed that these computable numbers could give rise to uncomputable ones—ones that could not be calculated using a definite rule—and that therefore there could be no “mechanical process” for solving all mathematical questions, since an uncomputable number was an example of an unsolvable problem. Turing’s idea of a “universal machine” was given the name “Turing machine” by Alonzo Church.

Turing’s concept of the “universal machine” was adapted to theories of brain function by McCulloch and Pitts, whose ideas in turn exerted a considerable influence on von Neumann’s *First Draft of a Report on the EDVAC*, a theoretical description of the stored-program machine that was read by all the designers of first-generation computers. In showing that a universal machine was possible, Turing’s paper was highly influential in the theory of computation, and it remained a powerful expression of the virtually unlimited adaptability of electronic digital computers. *From Gutenberg to the Internet*, reading 7.1. *Origins of Cyberspace* 394. Randell, *The Origins of Digital Computers: Selected Papers*, 519. 43745

The Most Luxurious of Uzanne’s Publications

paper specially embossed with a blind design similar to a watermark. Original triple binding of limp vellum with pictorial designs by E. Belville printed in black and gold, ribbon ties (renewed, tie slot on upper cover repaired), enclosing original paper wrapper printed in violet and black, by Berthon, and a third wrapper of art vellum printed with floral designs by Ferne; preserved in a quarter morocco folding box. Fine. Leather book label of I. Fernandez.

First Edition of this magnificent expression of bibliolatry, inspired by the Art Nouveau and Symbolist movements. Uzanne, the “high priest of fin-de-siècle bibliophilia” (Silverman, The New Bibliopolis: French Book Collectors and the Culture of Print, 1880–1914, p. 14), was a writer, publisher and journalist who worked with printers, binders, typographers and artists to create deluxe editions for the discerning bibliophile. His personal wealth allowed him to lavish attention “on such material signs of distinction as the luxurious paper, illustrations, and typography of volumes typically printed in single runs of twenty to three hundred copies” (Silverman, p. 108), which would then be distributed by select booksellers or by bibliophilic societies such as Uzanne’s Société des Bibliophiles Indépendants. “The search for refinement and esotericism further manifested itself in not only the physical form of these books but also their content. This encompassed both literary style, whether expressed by the precious language, neologisms, and archaisms common to certain works by the Symbolists and Uzanne’s Dictionnaire bibliophilosophique, and also the the unconventional genres (free verse, poetic essays, fantastic short stories) with which the Symbolists experimented” (ibid.). 42921

$12,500
Kinnier-Wilson Disease, Inscribed to Smith Ely Jelliffe

First Edition, journal issue. The classic description of hepatolenticular degeneration or “Wilson’s disease,” a hereditary metabolic disorder in which copper accumulates in tissues; the disorder causes liver disease and neuropsychiatric symptoms such as parkinsonism and cognitive dysfunction. This copy is from the library of Smith Ely Jelliffe, author of Diseases of the Nervous System (1915; Garrison-Morton.com 4599), founder of The Psychoanalytic Review and one of the first American book collectors in neuroscience, psychiatry and psychoanalysis. Garrison-Morton.com 4717.43817